day 1 training php

agenda today :
wifi: 5budayakerja

1. Perkenalan
Rizal BROER Bahaweres (Search Google)
0817171721
Group:

https://groups.google.com/d/forum/training_php_agus2019

pakai email @gmail.com

join groups : kirim email to : training_php_agus2019+subscribe@googlegroups.com

subject : subscribe

body email : kosong

 

2. Pembentukan Kelompok 3 orang

https://docs.google.com/spreadsheets/d/1PZEXw_G5y_hnYAcb8uVUc7hR0fbiA2YCLG-ymmwCTGQ/edit?usp=sharing

3. Target akhir
– Buat aplikasi sederhana
-Konek database
-logic php
– wordpress
// Agenda today,  7 agus 2019 :
port default ssl : 443;
ssl : 447
1. instalassi xamppp
download :
google search : xampp download

Tugas pertama 1.
Install Xampp
buat/jalankan program hello word php
join google groups

tugas 2
buat program untuk menghitung luas dan keliling persegi panjang

luas = panjang x lebar
keliling = 2 x ( panjang + lebar)
code yg tadi dibuat kedalam form

w3 school php

tugas 3
buat program untuk mengecek apakah bilangan itu ganjil atau genap.
kita memasukan/mematok suatu bilangan
bila ganjil dituliskan ganjil
bila genap dituliskan genap

 

 

Materi :

Dyta:

https://drive.google.com/drive/folders/10lnqIQeSDtd3Xm4HUXGHisRPY5u1hAVb

Rizal Broer

https://drive.google.com/drive/folders/1RDGxk8z_7yOMk8hh-Fb9EtUsKool4RS-?usp=sharing

 

Reference:

Php Manual , https://www.php.net/manual/en/index.php

 

 

Advertisement

Questioner Peserta Logo dan Merek

Questioner

1. Nama
2. jenis usaha
3. Tempat, tgl berdirinya usaha ?
3. Apakah sudah ada logo ?
gambar ? (Y/T)
Tulisan/ Huruf/ Kata ? (Y/T)
4. Sudah memasukan/mendaftarkan form logo di DPE, Dep.KumHam ?
4a. Sudah berapa lama ?
4b. respon balik/ feed Back ?

5 Apakah pernah mempelajari Teknis, Desain Membuat logo dan merek ?
5a. Konsep Merek ? (Y/T)
5b. Konsep Logo ? (Y/T)
5c. Tools Desain
Adobe illustrator, dll.
6. Apakah pernah melakukan/memproses logo dan Merek, ?
6a. pernah ke web Dep.KumHam/Deperindag ?
6b. pernah mengisi dan mendaftarkan ?
6c. pernah punya logo, Merek ?

 

http://www.dgip.go.id/formulir-terkait-permohonan-merek

 

 

ECC part 1

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC requires smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.[1]

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms based on elliptic curves that have applications in cryptography, such as Lenstra elliptic-curve factorization.

 

Theory

For current cryptographic purposes, an elliptic curve is a plane curve over a finite field (rather than the real numbers) which consists of the points satisfying the equation

{\displaystyle y^{2}=x^{3}+ax+b,\,}

along with a distinguished point at infinity, denoted ∞. (The coordinates here are to be chosen from a fixed finite field of characteristic not equal to 2 or 3, or the curve equation will be somewhat more complicated.)

This set together with the group operation of elliptic curves is an abelian group, with the point at infinity as an identity element. The structure of the group is inherited from the divisor group of the underlying algebraic variety.

{\displaystyle \mathrm {Div} ^{0}(E)\to \mathrm {Pic} ^{0}(E)\simeq E,\,}

 

Cryptographic schemes

Several discrete logarithm-based protocols have been adapted to elliptic curves, replacing the group

{\displaystyle (\mathbb {Z} _{p})^{\times }}

with an elliptic curve:

At the RSA Conference 2005, the National Security Agency (NSA) announced Suite B which exclusively uses ECC for digital signature generation and key exchange. The suite is intended to protect both classified and unclassified national security systems and information.[8]

Recently, a large number of cryptographic primitives based on bilinear mappings on various elliptic curve groups, such as the Weil and Tate pairings, have been introduced. Schemes based on these primitives provide efficient identity-based encryption as well as pairing-based signatures, signcryption, key agreement, and proxy re-encryption.

 

Reference :

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

 

Reading :

An Introduction to the Theory of Elliptic Curves Joseph H. Silverman Brown University and NTRU Cryptosystems, Inc.

https://www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf

 

Craig Costello A gentle introduction to elliptic curve cryptography. Summer School on Real-World Crypto and Privacy

https://summerschool-croatia.cs.ru.nl/2017/slides/A%20gentle%20introduction%20to%20elliptic%20curve%20cryptography.pdf

bitcoinbook/ch04.asciidoc

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc

 

Guide to Elliptic Curve Cryptography BOOK

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3037&rep=rep1&type=pdf

 

You tube Reference :

 

https://www.youtube.com/results?search_query=Elliptic+Curve+Cryptography

Elliptic Curve Cryptography Overview

https://www.youtube.com/watch?v=dCvB-mhkT0w

 

Elliptic Curve Diffie Hellman

https://www.youtube.com/watch?v=F3zzNa42-tQ

 

Elliptic Curve Point Addition

https://www.youtube.com/watch?v=XmygBPb7DPM

 

Elliptic curves

Explore the history of counting points on elliptic curves, from ancient Greece to present day. Inaugural lecture of Professor Toby Gee.

https://www.youtube.com/watch?v=6eZQu120A80

 

Martijn Grooten – Elliptic Curve Cryptography for those who are afraid of maths

https://www.youtube.com/watch?v=yBr3Q6xiTw4&t=119s

 

Elliptic Curve Cryptography, A very brief and superficial introduction

https://www.youtube.com/watch?v=oPJrWYmqGRs

 

ECC intro Broer