Soal UTS Forensics WhatsAPP
https://drive.google.com/drive/folders/1kEK44K9zR9DOGjv2aNmK-JAnJUnpPf5F?usp=sharing
Rizal Broer Bahaweres site
Soal UTS Forensics WhatsAPP
https://drive.google.com/drive/folders/1kEK44K9zR9DOGjv2aNmK-JAnJUnpPf5F?usp=sharing
Soal UTS
whole Suite Test Tools, SBST
https://drive.google.com/drive/folders/1DPSiLpWK3Ote9mio4ik4TY1uOLQppK2V?usp=sharing
File dapat diambil dan dilihat di
https://drive.google.com/drive/folders/1q8fHv39lq2PFsGg4pl-rT2ZDnhN6vNmW?usp=sharing
agenda today :
wifi: 5budayakerja
1. Perkenalan
Rizal BROER Bahaweres (Search Google)
0817171721
Group:
https://groups.google.com/d/forum/training_php_agus2019
pakai email @gmail.com
join groups : kirim email to : training_php_agus2019+subscribe@googlegroups.com
subject : subscribe
body email : kosong
2. Pembentukan Kelompok 3 orang
https://docs.google.com/spreadsheets/d/1PZEXw_G5y_hnYAcb8uVUc7hR0fbiA2YCLG-ymmwCTGQ/edit?usp=sharing
3. Target akhir
– Buat aplikasi sederhana
-Konek database
-logic php
– wordpress
// Agenda today, 7 agus 2019 :
port default ssl : 443;
ssl : 447
1. instalassi xamppp
download :
google search : xampp download
Tugas pertama 1.
Install Xampp
buat/jalankan program hello word php
join google groups
tugas 2
buat program untuk menghitung luas dan keliling persegi panjang
luas = panjang x lebar
keliling = 2 x ( panjang + lebar)
code yg tadi dibuat kedalam form
w3 school php
tugas 3
buat program untuk mengecek apakah bilangan itu ganjil atau genap.
kita memasukan/mematok suatu bilangan
bila ganjil dituliskan ganjil
bila genap dituliskan genap
Materi :
Dyta:
https://drive.google.com/drive/folders/10lnqIQeSDtd3Xm4HUXGHisRPY5u1hAVb
Rizal Broer
https://drive.google.com/drive/folders/1RDGxk8z_7yOMk8hh-Fb9EtUsKool4RS-?usp=sharing
Reference:
Php Manual , https://www.php.net/manual/en/index.php
Questioner
1. Nama
2. jenis usaha
3. Tempat, tgl berdirinya usaha ?
3. Apakah sudah ada logo ?
gambar ? (Y/T)
Tulisan/ Huruf/ Kata ? (Y/T)
4. Sudah memasukan/mendaftarkan form logo di DPE, Dep.KumHam ?
4a. Sudah berapa lama ?
4b. respon balik/ feed Back ?
5 Apakah pernah mempelajari Teknis, Desain Membuat logo dan merek ?
5a. Konsep Merek ? (Y/T)
5b. Konsep Logo ? (Y/T)
5c. Tools Desain
Adobe illustrator, dll.
6. Apakah pernah melakukan/memproses logo dan Merek, ?
6a. pernah ke web Dep.KumHam/Deperindag ?
6b. pernah mengisi dan mendaftarkan ?
6c. pernah punya logo, Merek ?
http://www.dgip.go.id/formulir-terkait-permohonan-merek
Hari ini kita mulai UAS jam 8.00 dikelas biasa; Peserta UAS wajib hadir ontime
Dikerjakan dikertas, Lembar Ujian.
Boleh buka buku, internet dll, DILARANG MECONTEK TEMAN . Yang melangar akan diberi BONUS E
Soal type A. untuk NIM Ganjil
Soal Type B untuk NIM Genap
https://drive.google.com/drive/folders/1rjlQ-uY03C9f3QllK5VYFsKim7LGkAGp?usp=sharing
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC requires smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.[1]
Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms based on elliptic curves that have applications in cryptography, such as Lenstra elliptic-curve factorization.
For current cryptographic purposes, an elliptic curve is a plane curve over a finite field (rather than the real numbers) which consists of the points satisfying the equation
{\displaystyle y^{2}=x^{3}+ax+b,\,}
along with a distinguished point at infinity, denoted ∞. (The coordinates here are to be chosen from a fixed finite field of characteristic not equal to 2 or 3, or the curve equation will be somewhat more complicated.)
This set together with the group operation of elliptic curves is an abelian group, with the point at infinity as an identity element. The structure of the group is inherited from the divisor group of the underlying algebraic variety.
{\displaystyle \mathrm {Div} ^{0}(E)\to \mathrm {Pic} ^{0}(E)\simeq E,\,}
Several discrete logarithm-based protocols have been adapted to elliptic curves, replacing the group
{\displaystyle (\mathbb {Z} _{p})^{\times }}
with an elliptic curve:
At the RSA Conference 2005, the National Security Agency (NSA) announced Suite B which exclusively uses ECC for digital signature generation and key exchange. The suite is intended to protect both classified and unclassified national security systems and information.[8]
Recently, a large number of cryptographic primitives based on bilinear mappings on various elliptic curve groups, such as the Weil and Tate pairings, have been introduced. Schemes based on these primitives provide efficient identity-based encryption as well as pairing-based signatures, signcryption, key agreement, and proxy re-encryption.
Reference :
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
Reading :
An Introduction to the Theory of Elliptic Curves Joseph H. Silverman Brown University and NTRU Cryptosystems, Inc.
https://www.math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf
Craig Costello A gentle introduction to elliptic curve cryptography. Summer School on Real-World Crypto and Privacy
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc
Guide to Elliptic Curve Cryptography BOOK
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3037&rep=rep1&type=pdf
You tube Reference :
https://www.youtube.com/results?search_query=Elliptic+Curve+Cryptography
Elliptic Curve Cryptography Overview
https://www.youtube.com/watch?v=dCvB-mhkT0w
Elliptic Curve Diffie Hellman
https://www.youtube.com/watch?v=F3zzNa42-tQ
Elliptic Curve Point Addition
https://www.youtube.com/watch?v=XmygBPb7DPM
Elliptic curves
Explore the history of counting points on elliptic curves, from ancient Greece to present day. Inaugural lecture of Professor Toby Gee.
https://www.youtube.com/watch?v=6eZQu120A80
Martijn Grooten – Elliptic Curve Cryptography for those who are afraid of maths
https://www.youtube.com/watch?v=yBr3Q6xiTw4&t=119s
Elliptic Curve Cryptography, A very brief and superficial introduction
https://www.youtube.com/watch?v=oPJrWYmqGRs